
LA-UR-21-26363
Approved for public release; distribution is unlimited.

Title: Improved FMESH Capabilities in the MCNP 6.3 Code

Author(s): Josey, Colin James
Kulesza, Joel A.

Intended for: 2021 MCNP User Symposium, 2021-07-12/2021-07-16 (Los Alamos, New
Mexico, United States)

Issued: 2021-07-06

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Improved FMESH Capabilities in the
MCNP® 6.3 Code
Colin Josey, Joel Kulesza

XCP-3 (Monte Carlo Codes)

2021 MCNP® User Symposium
July 12, 2021

Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Slide 2 of 19

Introduction

Since 6.2, FMESH has undergone a substantial revision in capabilities.
I The default FMESH configuration was heavily optimized.
I 3 new tally backends were added for various needs (mainly, larger tallies).
I MESHTAL is deprecated and replaced with an HDF5 + XDMF output

format.
(This format allows for much faster and easier postprocessing and
analysis)

Slide 3 of 19

Tally Algorithms

It started as a side project - can we use MPI remote memory access to scale
further than ever before?
I needed a point of comparison, so I implemented 4 algorithms:
I History - basic history statistics without optimization.
I Fast History - a tuned version of 6.2’s FMESH algorithm, tracks changed

indices to reduce memory bandwidth usage.
I Batch - Threads share a tally array, so memory usage is reduced.
I Batch RMA - The Batch algorithm, but using MPI-3 RMA to distribute

tallies over all MPI ranks.

Slide 4 of 19

History Algorithm

Rank 0 Rank-Local
Thread-Local

Score Array

Tally Event

Partial
ResultsResult Arrays

Accumulate

History Complete

"Batch" / Simulation Complete

Every thread has a full score array.

Slide 5 of 19

Fast History Algorithm

Rank 0 Rank-Local
Thread-Local

Score Array

Tally Event

Partial
ResultsResult Arrays

Accumulate

History Complete

"Batch" / Simulation Complete

Updated Indices

Every thread has a full score array and an indices array.

Slide 6 of 19

Batch Algorithm

Rank 0 Rank-Local
Thread-Local

Score Array Tally EventResult Arrays

Accumulate

Batch Complete

Each MPI rank has a score array, rank 0 has the results.

Slide 7 of 19

Batch RMA Algorithm

Remote Rank-Local
Thread-Local

Score Array
Local Data

Tally Event

Result Arrays
Local Data

Score Array
Remote
Handle

Accumulate

Batch Completion

Tallies are uniformly distributed without duplication.

Slide 8 of 19

Infrastructure Changes

The MCNP code didn’t support batch statistics in any way. A number of changes
had to be made:
I NPS now has a batch size option.
I When any batch tallies are enabled, KCODE will resample the fission bank

to a fixed size.

This means the RNG sequence will change if batch tallies are added!

Slide 9 of 19

Performance

I Tested on a k-eigenvalue problem with a 10-cm, 10-g/cc ball of 235U.
I Maximizes the effect of tally performance on the problem.
I Mesh was scaled from 50 × 50 × 50 to 1600 × 1600 × 1600
I Neutrons/hr and memory usage tallied
I Tested on 6 nodes of a cluster with 2 sockets, 18 cores each, 128 GB

memory.
I Ran combinations of MPI, OpenMP.

Note: OpenMPI 3.1.6 + Omni-Path does not support MPI_THREAD_MULTIPLE, so
threading performance is poor for Batch RMA.

Slide 10 of 19

Performance

105 106 107 108 109

Number of Tallies

102

103

M
illi

on
 N

eu
tro

ns
 /

Ho
ur

Performance Comparison, Threads = 1

No Tally
Stock
Fast History
Batch
Batch RMA
History

Slide 11 of 19

Performance

100 101

Threads per Rank

102

103

104
M

illi
on

 N
eu

tro
ns

 /
Ho

ur
Performance Comparison, 200x200x200 Mesh - Fixed Total Threads

No Tally
Stock
Fast History
Batch
Batch RMA

Slide 12 of 19

Memory

105 106 107 108 109

Number of Tallies

102

103

104

105

By
te

s p
er

 T
al

ly

Memory Usage Comparison, Threads = 1
Stock
Fast History
Batch
Batch RMA
History

Batch RMA has high overhead that dissipates for large problems.

Slide 13 of 19

Memory

100 101

Threads per Rank

102

103

104
By

te
s p

er
 T

al
ly

Memory Usage Comparison, 200x200x200 Mesh - Fixed Total Threads

Stock
Fast History
Batch
Batch RMA

Slide 14 of 19

File Formats

Previous versions of the MCNP code used the MESHTAL format:
I ASCII output results in large file sizes.
I The binary to ASCII conversion was generally slow.
I It is tricky to bring into other tools (needs a processing script).

Version 6.3 uses HDF5 + XDMF:
I Binary file format for smaller sizes and faster IO.
I Trivial to load into ParaView, VisIt1, Python, etc.
I (Optional) parallel HDF5 for even faster performance.

1 Note that VisIt uses HDF5 1.8 at the time of this writing. MCNP outputs files that use the 1.10
format. Future versions of VisIt will use 1.10+. For now, h5repack can be used to convert to a 1.8
file.

Slide 15 of 19

File IO Performance

216 million cell mesh, Lustre filesystem, 8 stripes, 1M stripe size, 8 MPI Ranks:

Method Time (s) File Size
MESHTAL 617.5 12 GB

HDF5 + XDMF 18.1 3.2 GB (in runtape)
Parallel HDF5 + XDMF 7.5 3.2 GB (in runtape)

Slide 16 of 19

ParaView Example

Make sure to open with “XDMF Reader”, which is the reader for XDMF version 2
files.

Slide 17 of 19

ParaView Example - Point Source on Cube Corner

Slide 18 of 19

Python Example

Listing 1: Python 3.6+ Example for Reading FMESH
1 import h5py
2 import numpy
3
4 def read_fmesh(filename , tally_id):
5 with h5py.File(filename , ’r’) as handle:
6 group = handle[f"/results/mesh_tally/mesh_tally_{tally_id}"]
7
8 data = {}
9 # Transpose converts indices to x, y, z, e, t

10 data["mean"] = numpy.transpose(group["mean"][()])
11 data["relative_standard_error"] = \
12 numpy.transpose(group["relative_standard_error"][()])
13 data["grid_x"] = group["grid_x"][()]
14 data["grid_y"] = group["grid_y"][()]
15 data["grid_z"] = group["grid_z"][()]
16 data["grid_energy"] = group["grid_energy"][()]
17 data["grid_time"] = group["grid_time"][()]
18
19 return data
20
21 data = read_fmesh("runtpe.h5", 4)

By slicing group[“mean”] instead of using [()], one can load a portion into
memory without loading all of it.

Slide 19 of 19

Summary

I New FMESH outperforms 6.2’s in most workloads.
I New modes allow for much lower memory usage for large problems.
I File formats are fast and easy to work with.
In the future, we expect to extend this capability to more parts of the MCNP code.

